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In this paper we present an experimental study of the long-surface-wave instability
that can develop when a granular material flows down a rough inclined plane. The
threshold and the dispersion relation of the instability are precisely measured by
imposing a controlled perturbation at the entrance of the flow and measuring its
evolution down the slope. The results are compared with the prediction of a linear
stability analysis conducted in the framework of the depth-averaged or Saint-Venant
equations. We show that when the friction law proposed in Pouliquen (1999a) is
introduced in the Saint-Venant equations, the theory is able to predict quantitatively
the stability threshold and the phase velocity of the waves but fails in predicting
the observed cutoff frequency. The instability is shown to be of the same nature
as the long-wave instability observed in classical fluids but with characteristics that
can dramatically differ due to the specificity of the granular rheology.

1. Introduction
Natural gravity flows such as mud flows or debris flows can be destructive. Very

often the material does not flow continuously down the slope of mountains, but
develops in a succession of surges. These surges are of large amplitude and can
be destructive as they are able to carry large amounts of debris. The breaking
of an initially continuous flow into a succession of waves is often attributed to
an inertial instability that can develop in thin liquid flows down slopes. However,
while this instability has been extensively studied for the case of Newtonian fluids,
the formation of long surface waves in particulate flows is much less investigated.
The goal of this paper is to clarify the dynamics of the long-wave instability for a
cohesionless granular material flowing down a rough inclined plane.

Long-wave free-surface instability in gravity flows is a phenomenon common to
many fluids. For a viscous fluid in the laminar regime, the instability is often called
‘Kapitza instability’ after the pioneering work by Kapitza & Kapitza (1949). They
have observed that a thin film of water flowing down a vertical wall does not remain
uniform but deforms into a succession of transverse waves propagating down the
wall. Since Kapitza & Kapitza’s work, many experimental and theoretical studies
have been devoted to thin viscous flows down inclined planes (see, for instance, the
review of Chang 1994 or Oron, Davis & Bankoff 1997). Free-surface waves are also
observed in turbulent flows down slopes, where they evolve into a series of more
or less periodic bores called ‘roll waves’ (Cornish 1934; Dressler 1949; Needham &
Merkin 1984; Kranenburg 1992). These roll waves are of great importance in the
hydraulics of flows in open channels. Similar surges are also observed in flows of
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more complex fluids, e.g. mud flows, gravity currents, flows of particle suspensions
(see Simpson 1997). However, few precise experimental studies can be found for these
non-Newtonian fluids.

The spontaneous formation of free-surface waves in fluids having very different
rheological properties comes from the fact that the instability mechanism does not
depend on the precise fluid characteristics (see the clear discussion by Smith 1990 in
the context of viscous film flows). When a fluid layer flows down an inclined plane, a
small perturbation of the free surface propagates at first order with a phase velocity
which is different from the mean fluid velocity. If the fluid could instantaneously
adjust its velocity to the local thickness variation, the wave would propagate without
amplification (kinematic waves, Witham 1974). However, because of inertia, the fluid
does not immediately adjust its velocity when the wave arrives. This delay can give
rise to a positive mass flux under the wave leading to the growth of the perturbation.

From a theoretical point of view, many studies concern the case of laminar
Newtonian flows. In this case the linear stability analysis of a film flow can be
derived based on the Orr–Sommerfeld equation (Benjamin 1957; Yih 1963). Amplitude
equations and precise nonlinear models have also been recently developed (Chang
1994; Ruyer-Quil & Manneville 2000). For non-Newtonian complex fluids, exact
three-dimensional analysis are often not possible because of the lack of sufficient
knowledge of the constitutive equations. For such systems, a classical approach
for studying the stability of thin flows is the shallow-water description. Mass and
momentum balances are written in a depth-averaged form (Saint-Venant equations,
Saint-Venant 1871). In this framework, the rheological characteristics of the fluid are
mainly taken into account in the expression for the shear stress between the flowing
layer and the surface of the plane. The shear stress is a viscous force for laminar
Newtonian flows (Shkadov 1967), a turbulent friction given by a Chezy formula for
turbulent flows (Kranenburg 1992), and a Bingham stress for mud flows (Liu & Mei
1994). It is then possible to undertake a linear stability analysis of the flow and to
predict the threshold and growth of the waves.

Although the free-surface instability mechanism is the same for different fluids,
the precise characteristics of the wave development (threshold, growth rate, etc.)
dramatically depend on the rheological properties of the material. A precise
experimental study of the instability could then serve as a test for the rheological laws
proposed for complex fluids. This is the basis of this paper on the wave formation in
cohesionless granular materials. The formation of long waves in granular flows down
inclined planes has been reported in previous studies (Savage 1979; Davies 1990;
Vallance 1994; Ancey 1997; Daerr 2001). However, to our knowledge no precise
measurements of the instability properties have been carried out.

The rheology of dry granular materials flowing in a dense regime is still an open
problem (Rajchenbach 2000; Pouliquen & Chevoir 2002). However, for the flow
of thin granular layers on inclined planes, a Saint-Venant description seems to be
relevant. Savage and Hutter first proposed this approach for describing the motion of
a granular mass down an inclined plane (Savage & Hutter 1989). For the basal friction
stress they used a solid friction law where the shear stress at the interface between
the flowing material and the inclined plane is proportional to the normal stress, i.e. to
the weight of the material column above the base. Although this description is able to
correctly predict the spreading of a mass on steep slopes and smooth surfaces (Savage
& Hutter 1989; Naaim, Vial & Couture 1997; Gray, Wieland & Hutter 1999; Wieland,
Gray & Hutter 1999), it does not capture the existence of steady uniform flows when
the surface is rough and the material sheared in the bulk. Recently, a generalization
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of the basal friction law has been proposed based on scaling properties observed in
experiments (Pouliquen 1999a). The generalization gives a friction coefficient which
is no longer constant but depends on the local velocity and thickness. Using this
law in the Saint-Venant description it is possible to quantitatively predict the motion
of a mass down a rough inclined plane from initiation to deposit (Pouliquen &
Forterre 2002). In this paper we ascertain to what extent the same approach using
the generalized friction law can quantitatively predict the long-wave instability for
dry granular materials.

To this end we have carried out precise measurements of the linear development
of the instability in the same spirit as Liu, Paul & Gollub (1993) for liquid films.
Liu et al. have developed a method to induce at the entrance of the liquid flow
a perturbation whose amplitude and frequency can be controlled. The instability
being convective, the observed downstream waves result from the amplification of the
entrance perturbations. By following the evolution of the injected perturbation for
different frequencies, Liu et al. were able to experimentally measure the dispersion
relation and precisely determine the instability threshold. In this paper we follow
the same procedure for granular flows: in the limited range of inclinations where
steady uniform flows are observed, we impose an external forcing to control the wave
development.

The paper is organized as follows. We first present preliminary experimental
observations of the instability without forcing (§ 2). We show that a simple visual
analysis of the free-surface instability is not sufficient to draw conclusion on the
instability mechanism and that more precise measurements are necessary. The
experimental set-up, the forcing method and the measurement procedure are described
in § 3. The linear stability analysis based on the Saint-Venant equations is presented in
§ 4. Results and comparison between experiments and theory are presented for glass
beads in § 5 and for sand in § 6. Discussion and conclusion are given in § 7.

2. Preliminary observations
Free-surface waves in granular flows down a rough inclined plane have been

reported previously by several authors. Using glass beads, Savage (1979) and Vallance
(1994) observed the deformation of the free surface into a succession of surges down
a long chute flow. Ancey (1997) reported the formation of surge waves with sand.
Recently, Daerr (2001) noticed an instability at the rear of avalanche fronts for flows
of glass beads on velvet. All these experiments were performed on rough surfaces into
a dense regime, i.e. with the mean volume fraction of the medium almost constant.
Recently, waves have also been observed for granular flows on flat smooth surfaces
(Prasad, Pal & Römkens 2000; Louge & Keast 2001) but dramatic variations of
density are observed, with very dilute regions. We will not discuss this case here.

Figure 1 shows a typical free surface that we have observed for a flow of sand
0.8 mm in diameter down an inclined plane made rough by gluing one layer of sand
grains on it. A silo at the top of the plane (2 m long, 70 cm wide) continuously supplies
the flow at a constant flow rate. Waves first appear close to the outlet of the silo
as two-dimensional deformations. They rapidly amplify downstream and break down
in the transverse direction due to secondary instabilities. The shape of the saturated
waves is highly nonlinear as shown by the typical thickness profile plotted at the
bottom of figure 1. The distance between two surges is typically of the order of 20 cm,
which is very large compared to the thickness of the layer (which is about 5 mm for
the case of figure 1).
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1 mm

5 cm

Figure 1. Free surface of sand flow showing the long surface waves. Material is flowing
downwards; the plane width is 70 cm. Shown below is a typical thickness profile of the natural
waves measured with a laser sheet light (see Pouliquen 1999a for description of the method).
The arrow gives the flow direction (sand 0.8mm in diameter, θ = 34◦, h = 4.6 mm).

The observed pattern looks similar to patterns observed in liquid flows. However, a
major difference appears when changing the experimental conditions, i.e. the thickness
of the layer and the inclination of the plane. Figure 2 shows a qualitative phase
diagram obtained simply by visual observations of the free surface. The striking
result of this preliminary analysis with sand is that the waves are observed mainly
close to the threshold of the flow (low inclinations and thin flows). In this region,
large-amplitude waves are observed. When one increases the thickness of the layer at
a fixed inclination, the waves form further and further downstream and eventually
disappear for thick flows, i.e. for more rapid flows. Naively speaking, this observation
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Figure 2. Qualitative stability diagram for sand 0.8mm in diameter. The hatched zone is the
domain where waves are observed. �, Waves; �, no wave; �, flow threshold.

appears to contradict the explanation in terms of an inertial instability, which should
develop preferentially in rapid flows rather than in slow flows.

Another striking preliminary observation is made using glass beads as the granular
material. In this case, no wave was observed in our set-up, whatever the thickness
and the inclination. The absence of noticeable deformation of the free surface made
systematic measurements of the steady uniform regime possible and allowed the
development of flow scaling laws (Pouliquen 1999a). This point is also intriguing as
one would expect the long-wave instability to occur as in other fluids for fast enough
flows (I. Vardoulakis 2002, personal communication).

The situation is thus rather confused and the preliminary observations raise several
questions. First, why are the flows of sand and glass beads so different? Secondly,
in sand the waves seem to develop for slow flow and disappear for rapid flow in
apparent contradiction with an inertial instability. Are the waves due to a different
instability mechanism? Finally, why is no wave observed with glass beads whereas for
rapid flows one would expect the instability to develop? In order to properly answer
these questions a precise study the stability of the flow is needed, not only by visual
observation of the free-surface deformation but also by careful measurements of the
amplification of an initially imposed perturbation. This is why, following Liu et al.’s
(1993) procedure, we have developed a forcing method.

3. Experimental set-up
The experimental set-up is presented in figure 3. The plane is 2 m long and

35 cm wide. The bottom plate and the sidewalls are glass plates. The roughness is
added by gluing on the bottom plate one layer of the particle used for the flow. The
flow rate is controlled by the opening of the silo. In this paper we have used two
granular materials: glass beads d = 0.5mm in mean diameter (the same as used in
Pouliquen 1999a), and sand d = 0.8mm in mean diameter (figure 4).
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Figure 3. (a) Sketch of the experimental set-up used to force the instability. (b) Description
of the light detection method.

3.1. Forcing method

In order to impose a perturbation whose frequency and amplitude can be easily
controlled we periodically blow a thin air jet on the free surface. The jet is created by
three loudspeakers embedded in a two-dimensional nozzle with a 1mm slit (figure 3a).
A homogeneous and localized air jet is then created, with amplitude and frequency
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(a) (b)
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Figure 4. Granular materials used. (a) Glass beads d = 0.5 ± 0.05 mm in mean diameter
(grinding glass beads supplied by Potters-Ballotini, France). (b) Sand d = 0.8 ± 0.1 mm in
diameter (sand of the Loire supplied by Sifraco, France).

controlled by the amplitude AGBF and frequency f sent to the loudspeakers via a
low-frequency function generator. The nozzle is placed 30 cm from the outlet of the
reservoir. The typical free-surface deformation we achieved with this set-up is of
the order 0.25 mm and frequency varies between 1 Hz and 20 Hz. A typical response
of the free surface to the forcing air jet is plotted in figure 5(a). In this figure,
the measurements are carried out just below the nozzle and the signal sent to the
loudspeaker is sinusoidal at a frequency of 3 Hz. One can see that the thickness
variation follows the forcing frequency but that the response is not sinusoidal but
highly asymmetric. When air is blown out, the air jet is localized and the induced
deformation important. When the nozzle sucks in air in, there is no influence on
the free surface. This difference between localized ejection and diffuse injection is
well-known and is used, for instance, for propulsion in water. The non-sinusoidal
response clearly appears in the Fourier transform of the signal in figure 5(b). The
perturbation is periodic at the imposed frequency, but many harmonics are also
present with amplitude that can be higher than the fundamental. This effect is more
pronounced when the forcing frequency is low. With this forcing method it is thus
difficult to inject low-frequency modes at measurable amplitude, without injecting
very high harmonics, which will interact in a nonlinear regime. Consequently, no
measurement of the linear evolution was possible below 1 Hz.

3.2. Thickness measurement

In order to measure precisely the free-surface deformation we use a light absorption
method. A parallel beam lights the plane from above as sketched in figure 3(b). Two
photodetectors are placed at different distances from the nozzle below the plane.
The light measured by the detector varies exponentially with the thickness of the
granular layer as shown by the calibration curves in figure 6. The light intensity
received by the detector is plotted versus the thickness (see Pouliquen 1999a for the
thickness measurement method). The data are well-fitted by I = I0 exp(−h/La), the
attenuation length being larger for the beads La = 7.4 d , than for the sand La = 1.82 d .
This calibration has been carried out for both uniform layers at rest (black dots) and
flowing layers (circles). We observe that the two data sets collapse. Since the light
absorption is a function of both the layer thickness and the volume fraction, this
collapse means that the variations of the volume fraction are negligible in the dense
flow regime studied here.
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Figure 5. Free-surface deformations of the flow below the nozzle (f = 3 Hz, AGBF = 1.5 V).
(a) Thickness variations. (b) Fourier transform of the thickness variations, |af |, averaged over
60 cycles (arbitrary units).
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Figure 6. Calibration curve for the light transmitted through a layer of grain as a function
of the thickness h of the layer, (a) glass beads d = 0.5 mm in diameter, (b) sand d = 0.8 mm
in diameter. �, Static layers; �, flowing layers. The solid curve is the best exponential fit
I/I0 = exp(−h/La) with La = 7.40 d for glass beads and La = 1.82 d for sand.

The signal measured by the photodetector is digitized by a PC through an
acquisition board at 100 kHz. Notice that from the temporal evolution of the light
amplitude, I (t), it is possible without any calibration to obtain the deformation of the
free surface δh(t) = h(t) − 〈h(t)〉, where 〈h(t)〉 is the mean thickness. The exponential
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attenuation law leads to the following expression: δh(t) = −La(ln I (t) − 〈ln I (t)〉),
which is independent of I0 and of the gain of the photodetectors. With this method
the deformation of the free surface is determined with a precision of about 0.05 mm.

3.3. Measurement of the dispersion relation

From the thickness measurements at two different points it is in principle possible
to measure the dispersion relation. To this end a perturbation at a given frequency
f is imposed on the flow by our forcing device. The two photodetectors then give
the free-surface deformations δh(x1, t) and δh(x2, t) at two different locations x1 and
x2. By computing the Fourier transform of the deformations, one obtains at the two
locations the amplitudes af (x1) and af (x2) and the phases φf (x1) and φf (x2) of the
fundamental mode at frequency f defined by δhf (x, t) = af (x) cos(2πf t − φf (x)).
If the evolution between x1 and x2 is assumed to be exponential, i.e. in the linear
regime of the instability, the deformation of the mode f is assumed to vary as
δhf = a0e

σx cos(2πf (t − x/vφ)). The spatial growth rate σ (f ) and the phase velocity
vφ(f ) are then given by

σ (f ) =
1

x2 − x1

ln

(
af (x2)

af (x1)

)
, (3.1)

vφ(f ) =
2π(x2 − x1)f

φf (x2) − φf (x1)
. (3.2)

The dispersion relation can then in principle be determined. Experimentally,
the difficulty is to determine a region of linear instability where the wave grows
exponentially. The amplitude of the deformation must be small enough to remain in
the linear evolution regime but not too small to be measurable.

4. Linear stability analysis
In this section, we present the theoretical analysis of the long-wave instability for

granular flows in the framework of the depth-averaged equations. A previous analysis
has been carried out by Savage (1989) using a Chezy formula to model the basal
shear stress. Here we present the theoretical predictions when the interaction between
the granular layer and the rough plane is described by the empirical friction law
derived from experimental measurements on steady uniform flows (Pouliquen 1999a).

4.1. Depth-averaged equations

A detailed derivation of the depth-averaged equations in the context of granular flows
can be found in Savage & Hutter (1989). Assuming that the flow is incompressible
and that the spatial variation of the flow takes place on a scale large compared to the
thickness of the flow, we obtain the depth-averaged mass and momentum equations
by integrating the full three-dimensional equations. For a two-dimensional flow down
a slope making an angle θ with the horizontal (see figure 7), depth-averaged equations
reduce to

∂h

∂t
+

∂hu

∂x
= 0, (4.1)

ρ

(
∂hu

∂t
+ α

∂hu2

∂x

)
=

(
tan θ − µ(u, h) − K

∂h

∂x

)
ρgh cos θ, (4.2)

where h is the local thickness of the flow and u is the averaged velocity defined by
u = Q/h, Q being the flow rate per unit of width.
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Figure 7. Sketch of the flow.

The first equation, (4.1), is the mass conservation. The second equation, (4.2), is
the momentum equation where the acceleration is balanced by three forces. In the
acceleration term, the coefficient α is related to the assumed velocity profile across
the layer and is of order 1. We will discuss the role of the parameter α in § 5. The
first force on the right-hand side is that due to gravity parallel to the plane. The
second term is the tangential stress between the fixed bottom and the flowing layer;
it is written as a friction coefficient µ multiplied by the vertical stress ρgh cos θ .
The friction coefficient is assumed to depend only on the local thickness h and the
local velocity u. This is a generalization of Savage & Hutter (1989)’s assumption of
a constant solid friction. However, the friction coefficient µ could depend on other
quantities such as the normal stress or the derivatives of h and u. The last term in
(4.2) is a pressure force related to the thickness gradient. The coefficient K represents
the ratio of the normal stress in the horizontal direction (x-direction) to the normal
stress in the vertical direction (z-direction). Recent numerical simulations have shown
that for dense granular flows the horizontal and the vertical normal stresses are
almost equal (Prochnow, Chevoir & Albertelli 2000; Ertas et al. 2001). Therefore, we
will take K = 1 in the following. However, it should be noticed that for non-uniform
flows, the factor K could depend on the divergence of the flow (Gray et al. 1999;
Wieland et al. 1999).

The main advantage of the Saint-Venant equations is that the dynamics of the
flowing layer can be predicted without knowing in detail the internal structure of
the flow, although some information of the flow dynamics is lost. The complex and
unknown three-dimensional rheology of the material is taken into account only in the
friction term µ(u, h). Moreover, this friction is easily determined experimentally by
studying steady uniform flows. These flows simply result from the balance between
gravity and friction, i.e. µ(u, h) = tan θ . This means that measuring how the mean
velocity u varies with the thickness h and inclination θ is sufficient to determine the
friction law. Knowing the function u(h, θ) is thus equivalent to knowing the friction
law (see Pouliquen 1999a).

4.2. Stability analysis

We study here the stability of a steady uniform flow of thickness h0 and averaged
velocity u0. For simplicity, we first re-write the Saint-Venant equations (4.1) and
(4.2) in the dimensionless variables given by: h̃ = h/h0, ũ = u/u0, x̃ = x/h0 and
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t̃ = (u0/h0)t . We then obtain

∂h̃

∂t̃
+

∂h̃ũ

∂x̃
= 0, (4.3)

F 2

(
∂h̃ũ

∂t̃
+ α

∂h̃ũ2

∂x̃

)
=

(
tan θ − µ(ũ, h̃) − ∂h̃

∂x̃

)
h̃, (4.4)

where F is the Froude number defined by:

F =
u0√

gh0 cos θ
. (4.5)

The two dimensionless control parameters of the problem are therefore the Froude
number F and the angle of inclination θ .

We look for steady uniform solutions given by

h̃(x̃, t̃) = 1, ũ(x̃, t̃) = 1. (4.6)

For this basic state, the mass conservation (4.3) is satisfied and the momentum
equation (4.4) reduces to the balance between gravity and friction: µ(1, 1) = tan θ. The
next step is to study the stability of (4.6) by perturbing the flow: h̃(x̃, t̃) = 1+h1(x̃, t̃),
ũ(x̃, t̃) = 1 + u1(x̃, t̃) with (h1(x̃, t̃) � 1, u1(x̃, t̃) � 1) and by linearizing the depth-
averaged equations, which become

∂h1

∂t̃
+

∂h1

∂x̃
+

∂u1

∂x̃
= 0, (4.7)

F 2

(
∂u1

∂t̃
+ (α − 1)

∂h1

∂x̃
+ (2α − 1)

∂u1

∂x̃

)
= −au1 − bh1 − ∂h1

∂x̃
, (4.8)

where the dimensionless variables a and b are related to the friction law µ(ũ, h̃) by

a =

(
∂µ

∂ũ

)
0

, b =

(
∂µ

∂h̃

)
0

(4.9)

(the index ‘0’ means that the derivatives are calculated for the basic state). Note that
to derive (4.8) we have used the mass conservation (4.7).

We then seek normal-mode solutions for the perturbations: h1(x̃, t̃) = ĥ exp i(k̃x̃ −
ω̃t̃) and u1(x̃, t̃) = û exp i(k̃x̃ − ω̃t̃) where k̃ is the dimensionless wavenumber and ω̃ is
the dimensionless pulsation, which, once introduced in the linearized equations (4.7)
and (4.8), gives the following dispersion relation:

−ω̃2 + 2αω̃k̃ +
i

F 2
((a − b)k̃ − aω̃) +

(
1

F 2
− α

)
k̃2 = 0. (4.10)

From this dispersion relation, we can easily compute the spatial growth rate and the
phase velocity of the waves for a given imposed real pulsation. Computation of the
spatial stability analysis is described in Appendix A. This analysis shows that the flow
is unstable when

1 − b

a
> α +

√
α(α − 1) +

1

F 2
. (4.11)

The above stability criterion is expressed as a function of a and b written in terms
of the derivatives of the friction law µ(u, h). Experimentally, we have access to the
relation u(h, θ) for steady uniform flows. It is therefore useful to write a stability
criterion using the relation u(h, θ) instead of µ(u, h). Moreover, we will see that this
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formulation gives an interpretation of the long-wave instability in terms of wave
interactions.

As for steady uniform flows we have µ(u, h) = tan(θ(u, h)), it is easy to show that

a =
1

cos2 θ

(
∂θ

∂ũ

)
0

,
b

a
= −

(
∂ũ

∂h̃

)
0

. (4.12)

The stability criterion (4.11) may therefore be written as

c̃0 > c̃+, (4.13)

where

c̃0 = 1 +

(
∂ũ

∂h̃

)
0

, (4.14)

c̃+ = α +

√
α(α − 1) +

1

F 2
. (4.15)

It can be shown that c̃0 is the (dimensionless) velocity of the kinematic waves, whereas
c̃+ is the (dimensionless) velocity of the ‘gravity waves’ that propagate downstream
(see Appendix B). The stability criterion (4.13) therefore means that the flow is
unstable when the velocity of the kinematic waves is larger than the velocity of the
gravity waves. Using this formulation, one can then determine the stability of the flow
just from the velocity law u(h, θ) of steady uniform flows.

4.3. Velocity law for granular materials

In this study we use two different granular materials: glass beads and sand. The
velocity law for the glass beads has been previously measured (Pouliquen 1999a).
The mean velocity u, the inclination θ and the thickness h are related through the
following relation:

u√
gh

= β
h

hstop(θ)
, (4.16)

where β = 0.136. The function hstop(θ) is the thickness of the deposit left by a steady
uniform flow at the inclination θ (Pouliquen & Renaut 1996; Daerr & Douady 1999).

In order to obtain the velocity law for the 0.8 mm sand we have performed the
same systematic measurements of the mean velocity as a function of thickness and
inclination. We observe that, as for glass beads, the velocity correlates with the deposit
function hstop(θ) as shown in figure 8. However, the master curve is different for sand
and glass beads.

We can therefore write the velocity law in the cases of glass beads and sand in a
similar form:

u√
gh

= −γ + β
h

hstop(θ)
, (4.17)

with

γ = 0, β =0.136 for glass beads,

γ = 0.77, β =0.65 for sand

(the function hstop(θ) for the glass beads and the sand is given in the caption of
figure 8).

Using this relation we can then apply the stability criterion (4.13) which compares
the kinematic wave velocity and the gravity wave velocity. To compute the velocities,
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The solid line is an interpolation given by hstop(θ ) = L((tan δ2 − tan δ1)/(tan θ − tan δ1) − 1)
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one needs to know the coefficients a and b given by (4.12). From (4.17), one obtains

a = − hstop(θ)

cos3/2θhstop
′(θ)

F

(F
√

cos θ + γ )
,

b

a
= −

(
3

2
+

γ

F
√

cos θ

)
. (4.18)

The (dimensionless) velocity of the kinematic waves given by (4.14) is therefore

c̃0 =
5

2
+

γ

F
√

cos θ
. (4.19)

The speed of the gravity waves depends on the parameter α (see (4.15)). With α = 1,
the instability condition has a particularly simple expression:

F >
2

3

(
1 − γ√

cos θ

)
. (4.20)

The linear stability analysis therefore predicts an instability for granular flows
when the Froude number is above a critical Froude number Fc. For glass beads
(γ = 0) the critical Froude number is independent of the angle of inclination and
given by Fc = 2/3. In the next section, we will compare these theoretical predictions
to the experimental studies.

5. Results for glass beads
We first present the experimental results for the flow of glass beads. When there

is no forcing, no wave was observed. By imposing a forcing at the entrance of the
flow we show that the instability exists but that the spatial growth rates are small.
Our inclined plane was therefore too short to allow the observation of the natural
instability.
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5.1. Spatial evolution of a forcing wave: existence of a linear regime

An example of an amplification of the imposed perturbation is shown in figure 9.
Typical temporal signals measured at two locations in the unstable regime (θ = 29◦,
h = 5.3 mm) are shown for a forcing frequency f = 2 Hz. First, we note that the
instability is convective, i.e. the periodic perturbation imposed at the entrance is
carried downstream by the flow. We also observe that the wave evolves strongly along
the plane: in the power spectra figures 9(b) and 9(d) the fundamental mode and the
first harmonic of the forced wave are amplified downstream whereas high-frequency
harmonic modes are damped. The amplification of the low-frequency perturbations
is also observed in the spectra of the natural noise.

At this stage, an important question is whether the amplification of the low-
frequency modes of the forcing waves results from a linear instability or from
nonlinear interactions between modes. Figure 10 shows the spatial evolution of the
fundamental mode of a forced wave down the slope for different forcing frequencies
(the control parameters are the same as in figure 9). We observe that the forcing
modes evolve exponentially down the plane, which implies that we are studying the
linear development of the instability.

Another proof of the existence of a linear region is given in figure 11(a) below,
which shows the spatial growth rate σ of a forced mode as a function of its frequency
f . The filled circles are measurements obtained by imposing a forcing at different
frequencies f and measuring the growth rate of the fundamental mode f . The other
curves are obtained by keeping the forcing frequency f0 constant and measuring the
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growth rate of all the harmonics f0, 2f0, 3f0. . . . We observe that both methods give
the same curves σ (f ), which shows that the different harmonic modes of the forced
waves weakly interact and evolve quasi-independently in a linear regime.

5.2. Dispersion relation

The existence of a linear region for the instability allows the precise measurement of
the linear dispersion relation of the surface waves. To measure the growth rate, the
two photodetectors are separated by 60 cm.

A typical experimental dispersion relation is presented in figure 11 for the above
control parameters (θ = 29◦, h = 5.3 mm). First, we note in figure 11(a) that the spatial
growth rate of a mode varies with the frequency. For low frequencies, the
spatial growth rate is positive, i.e. the amplitude of the mode is increased down
the plane as shown in figure 10 (2 Hz and 5 Hz). The flow is therefore unstable
for the control parameters considered. There exists a cutoff frequency for which the
amplitude of the mode remains constant down the plane (see the mode f = 7 Hz
in figure 10). For higher frequencies, the amplitude decays down the plane and the
mode is stable (see the mode f = 12 Hz in figure 10). We shall see that the existence
of a well-defined cutoff frequency fc will allow us to determine precisely the stability
threshold. The cutoff frequency fc can typically be determined with a precision of
about 0.5 Hz.

The phase velocity of the wave as a function of the frequency can also be determined
as shown in figure 11(b). We observe that the phase velocity vφ is almost independent
of the frequency (the variations of vφ are within the error bars), which means that the
system is non-dispersive within the range of frequencies sexplored in the experiment
(see also the inset). For θ =29◦ and h = 5.3 mm, vφ ≈ 45 cm s−1, which is a little
more than the double of the average velocity of the flow (u ≈ 22 cm s−1). We have
systematically measured the phase velocity for other values of the control parameters
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(θ , h). The phase velocity is always nearly independent of the frequency. However, its
value depends on the parameters (θ , h) as we shall see in § 5.4.

5.3. Stability threshold

So far, results have been presented for a given inclination θ and thickness of the flow
h. When decreasing the thickness of the flow at fixed θ , we observe that both the
cutoff frequency and the growth rate of the most unstable mode decrease, as shown
in figure 12. The flow is then less unstable as the thickness of the flow decreases and
eventually becomes stable below a critical thickness hc.
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In order to measure the stability threshold hc precisely, we have systematically
measured the cutoff frequency fc as a function of the thickness h as shown in
figure 13(a). The neutral stability curve fc(h) is then extrapolated to zero frequency
in order to determinate hc. In order to obtain a good estimate of the critical thickness
we have chosen to interpolate the stability curve fc(h) with two polynomials (see
the caption of figure 13). For θ = 29◦, we obtain hc(29◦) = 2.6 ± 0.3 mm. The same
method can be applied to measure the critical Froude number Fc, where the Froude
number, F = u/

√
gh cos θ , is measured for each set of (θ , h) (see figure 13b). In that

case, the two control parameters are (θ , F ) instead of (θ , h). For θ =29◦, we find
Fc(29◦) = 0.54 ± 0.02.
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The entire procedure is applied for different angles of inclination. Results are shown
in figure 14, which gives the cutoff frequency of the waves as a function of the Froude
number F . Note that no measurements were made for θ above 29◦ or below 24◦.
For θ > 29◦, the flow is no longer in a steady uniform regime but accelerates down
the slope and leaves the dense regime. For θ < 24◦, the flow rate required to reach the
instability increases dramatically. Even with an amount of granular material as large
as 150 l, the total duration of the flow at the threshold is not long enough to allow
precise measurements of the stability threshold. This limitation also explains the large
uncertainty at θ = 24◦ and why no measurements have been made for high Froude
numbers at this angle.

We observe in figure 14 that the cutoff frequencies obtained at different angles
collapse close to the threshold when plotted as a function of the Froude number.
This result implies that the instability is controlled by the Froude number, at least
near the stability threshold.

From these measurements we can determine the stability diagram of the flow in the
phase space (θ , h) or (θ , F ), as presented in figure 15. We note that the instability takes
place for high inclinations and large thicknesses. The control parameter is the Froude
number, as shown in figure 15(b). While the critical thickness hc varies strongly with
the angle of inclination of the plane, the critical Froude number Fc only weakly
depends upon θ . For glass beads, we find Fc = 0.57 ± 0.05.

5.4. Comparison with the theory

The main experimental results for the instability for glass beads are:
(i) The stability threshold is controlled by the Froude number. Waves appear above

a critical Froude number given by Fc = 0.57 ± 0.05.
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(ii) The surface-wave instability is a long-wave instability, i.e. the first unstable
mode is at zero frequency (zero wavenumber). Above the stability threshold, there
exists a cutoff frequency for the instability.

(iii) Within the frequency range investigated, the phase velocity of the waves weakly
depends upon the frequency, i.e. the medium is non-dispersive.

In this section, we compare these results with the predictions of the linear stability
analysis performed in the framework of the depth-averaged equations (see § 4). We
have seen that this analysis gives the stability threshold and the spatial dispersion
relation as a function of the velocity law u(h, θ) which, for glass beads, is given by
(4.16).

The only parameter that is unknown in the theory is α in the acceleration term of
the Saint-Venant equations. This parameter is related to the unknown velocity profile
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across the layer (see § 4.1). For a granular flow down an inclined plane, there are no
experimental measurements of the velocity profile but α is close to 1. In the following,
we will take α = 1 for simplicity. We will discuss in more detail the influence of α at
the end of the section.

5.4.1. Stability threshold

We first compare the theoretical and the experimental stability threshold. For glass
beads, we have seen that the linear stability analysis predicts an instability when

F >
2

3
, (5.1)

or

h >
2

3

√
cos θ

β
hstop(θ). (5.2)

The theoretical prediction is given in figure 15 by the dashed curve. We note that the
agreement between the experimental data and the theory is relatively good concerning
the variation of the critical thickness with the angle and for the order of magnitude
of the critical Froude number. However, the theory predicts a critical Froude number
that is about 15–20% higher than the experimental one.

5.4.2. Dispersion relation

The linear stability analysis also gives the spatial dispersion relation for the waves.
A typical comparison between theory and experiment is given in figure 16, which
shows on the same graph the predicted dispersion relation and the experimental data
for a given set of control parameters (θ = 29◦, F = 1.02). We note that the main
discrepancy between theory and experiment is that the linear stability analysis does
not predict a cutoff frequency for the waves (figure 16a). No term in the Saint-Venant
equations stabilizes the short wavelengths. However, the linear stability analysis gives
a good order of magnitude for the maximum growth rate of the instability, when one
compares that measured in the experiment and that predicted by the theory.

It is also interesting to compare the experimental phase velocity to the one predicted
by the linear stability analysis (figure 16b). We observe that within the frequency range
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investigated in the experiment, the theory predicts a constant phase velocity, in good
agreement with the experimental data. The theory also predicts an increase of the
phase velocity for very low frequencies, which we are unable to test with our forcing
method. It must be noted that the two limits of the theoretical phase velocity have a
precise physical meaning. For ω̃ = 0, ṽφ is equal to the velocity of the kinematic waves
c̃0 = 5/2 while for ω̃ → ∞, ṽφ tends to the velocity of the gravity waves c̃+ = 1+(1/F )
(see § 4.3).

We have confirmed this result by systematically measuring the phase velocity of the
waves for different angles of inclination and Froude numbers. The data are presented
in figure 17. We observe that the experimental phase velocity is always close to the
speed of the gravity waves (solid line).

5.4.3. Influence of the parameter α related to the velocity profile

The results of the linear stability analysis presented above are obtained with the
parameter α equal to 1. This parameter appears in the Saint-Venant equations in
the acceleration (§ 4.1) and is defined by α = 〈u2〉/〈u〉2

. It is therefore necessary to
make an assumption on the velocity profile across the layer to know the value of
α. The value α = 1, corresponding to a plug flow, was used in the pioneered work
of Savage & Hutter (1989). More recent studies on granular surface flows assume
that the velocity profile is linear and therefore use the value α = 4/3 (Khakar et al.
1997; Douady, Andreotti & Daerr 1999). For a granular flow down a rough inclined
plane, recent numerical simulations suggest that the velocity profile does not remain
linear for thick layers but is close to a Bagnold profile (Ertas et al. 2001), i.e. varies
as z3/2 (α = 5/4). From the instability criterion (4.13), we obtain for α = 5/4 (resp.
α = 4/3) a critical Froude number Fc = 0.89 (resp. Fc = 1, 03) to be compared with
the experimental value Fc = 0.57 ± 0.05. Paradoxically, the prediction of the theory
(for both the threshold and the wave velocity) seems to be better with α = 1.
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These results show that taking into account the velocity profile using a constant
parameter α in the depth-averaged equations is not very satisfactory. This result is
well-known in the case of viscous liquid films. It has been shown (see Ruyer-Quil &
Manneville 2000 for instance) that the simple Saint-Venant equations do not predict
quantitatively the primary instability if one introduces α = 6/5, corresponding to
the parabolic velocity profile observed in viscous flows. Comparison between the full
linear stability analysis of the Navier–Stokes equations and the prediction of the
Saint-Venant equations has shown that the latter overestimates the stability threshold
by about 20%. This difference between the exact three-dimensional resolution and
the averaged equations comes from the fact that, for non-stationary flows, the shear
stress at the base is no longer exactly given by its expression for steady uniform flows
(Ruyer-Quil & Manneville 2000).

It is therefore questionable to assign a precise physical meaning to the value of the
parameter α in the depth-averaged equations. At best, one may consider α as a ‘fit
parameter’ in the equations and the simple value α = 1 works well in our case.

6. Results for sand
The preliminary visual observations with sand were different from those with glass

beads. Waves were observed without forcing for slow flows but seemed to disappear
for rapid flows, in apparent contradiction with an inertial instability. In this section,
we show that the forcing method allows to clarify the situation.

6.1. Experimental results

We have measured the dispersion relation of the waves for sand with the same method
used for glass beads. However, important difficulties arise in the case of sand. Since
the flow with sand is strongly unstable, it is difficult to define a linear region where
the waves grow exponentially. Moreover, the large noise associated with the natural
instability makes the measurements much less reproducible than with glass beads. It
is therefore more difficult to measure the dispersion relation with sand than with glass
beads. In order to measure the growth rate, we have chosen the following method.
First, the two photodiodes are located very close to the nozzle x1 = 2 cm and x2 = 10 cm
to prevent as much as possible measurements of the nonlinear evolution of the waves.
Then, for each frequency f , the growth rate defined as σ (f ) = (1/(x2 − x1)) ln(a2/a1)
is averaged over many measurements, carried out at different forcing amplitudes and
forcing frequencies.

In spite of the uncertainties and the large error bars, the general trend of the
dispersion relation can be measured as shown in figure 18, which presents
the evolution of the growth rate σ (f ) with the frequency for different Froude numbers,
at a fixed angle θ = 35◦. This plot should be compared with the one obtained for glass
beads (figure 12). We observe that for a given Froude number, the variation of the
growth rate with the frequency is similar to that for glass beads. The low frequencies
are amplified while modes above a given cutoff frequency are damped. However, the
order of magnitude of the growth rate for the sand is between 0.02 cm−1 and 0.1 cm−1,
which is about five times the typical growth rate for glass beads. This explains why
the natural instability is easily observed with sand and not with glass beads.

Another difference between sand and glass beads arises when studying the influence
of the Froude number. For sand, the growth rate of the most unstable mode increases
as the Froude number decreases, in contrast with glass beads. The most unstable
mode is observed for F = 0.25, which corresponds to the slowest flow that may be
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achieved at this angle. This result is all the more surprising since the cutoff frequency
decreases when the Froude number decreases, as observed before with glass beads.

These results are confirmed for other angles of inclination. Figure 19(a) gives the
growth rate of the most unstable mode σmax as a function of the Froude number for
all the angles studied (32◦ < θ < 36◦). In view of the experimental difficulties, precise
measurements are carried out for each angle only for two extreme flows: a slow flow
very close to the flow threshold and a fast flow, corresponding to the limits of our
set-up. In this figure, we can see that σmax is much larger for low-Froude-number
flows close to the flow limit (grey zone) than for high-Froude-number flows. On the
other hand, σmax remains positive even at high Froude number, which means that the
flow is still unstable. Therefore, the preliminary observation that the waves disappear
at high Froude number comes simply from the fact that the maximum growth rate is
a decreasing function of the Froude number.

It is also interesting to observe the behaviour of the cutoff frequency fc with
the Froude number (figure 19b). We see that fc decreases when F decreases, which
is the signature of a ‘high-Froude-number instability’. However, a range of unstable
frequencies still exists for the smallest Froude number Fmin ≈ 0.25 that can be achieved
in the experiment. This means that, for sand, the stability threshold is occurs below
the onset of flow.

6.2. Comparison with the theory

From the measurements presented in § 4.2 we know that the velocity law for flows
of sand has the same analytical form as the velocity law for glass beads but with
different coefficients. The mean velocity u, the thickness h and the inclination θ are
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related through the following relation:

u√
gh

= −γ + β
h

hstop(θ)
, (6.1)

with γ = 0.77 and β = 0.65.
From equation (4.20) the linear theory predicts an instability above the critical

Froude given by

Fc =
2

3

(
1 − 0.77√

cos θ

)
. (6.2)

In the range of inclination angles we used, the predicted threshold is then of the order
of Fc ≈ 0.1.

The stability threshold predicted by the linear stability analysis of the Saint-Venant
equation for sand is therefore close to zero and far below the smallest Froude number
that is achieved in the experiment. This prediction is compatible with our experimental
measurements (figure 19b) showing that the flows observed with sand are unstable
from the very onset of the flow.

Concerning the dispersion relation, the theory does not describe the observed
stabilization of the short wavelengths, as already noticed for glass beads. No cutoff
frequency is predicted. However, we can compute for a given set of control parameters
(θ , F ) the maximum spatial growth rate σmax . In the theory, the maximum growth
rate is achieved at infinite frequency. Using (6.1) for u(h, θ) and the expression for
the spatial growth rate (A 6) from Appendix A, we obtain (α = 1)

σmax = −1

h
k̃i(+∞) =

a

h

[
c̃0 − 1 − (1/F )

2(F + 1)

]
, (6.3)

where a is given by (4.18) and c̃0 is given by (4.19).
In figure 19(a) the lines give the prediction for σmax(F, θ). We first notice that

in the range of Froude number where measurements are carried out, the predicted
maximum growth rate is always positive, i.e. the flow is always unstable. Secondly,
for F � 0.25, the maximal growth rate predicted by the theory decreases when the
Froude number increases, as observed in the experiment. Finally, although there is
no quantitative agreement between the predicted maximal growth rates and those
measured experimentally, the order of magnitude of σmax predicted by the theory is
the same as the order of magnitude of the experimental measurements.

6.3. Discussion

The linear stability analysis of the Saint-Venant equations seems therefore sufficient to
understand the properties of sand flow that were at first surprising from observations
of the unforced system. The theory predicts that the flow is always unstable and
that the most unstable modes occur for very slow flows, close to the flow threshold.
Therefore the occurrence of waves in slow flows of sand does not come from a new
instability mechanism but results from the classical long-wave inertial instability.

However, the features of the instability contrast dramatically with the instability in
classical fluids due to the difference in rheology and flow rules. A granular medium
can be unstable from the very onset of the flow, unlike classical fluid flows. This
property results from the existence of a critical angle in granular flows. Unlike
classical fluids, the speed of the kinematic waves in a granular flow does not vanish
at the flow threshold, i.e. when h → hstop. If the speed of the kinematic wave c0

at h → hstop, c0 = u(hstop) + u′|(hstop) hstop, is larger than the speed c+ of the gravity
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Figure 19. Results for sand 0.8mm in diameter. (a) Spatial growth rate of the most unstable
mode σmax(F ); (b) neutral stability curve fc(F ) for different inclination angles (given in the
inset). The lines give the theoretical predictions (α = 1).

waves, c+ = u(hstop)+
√

ghstop cos θ , the flow may be unstable from its very onset. This
explains why the Saint-Venant equations can predict the formation of waves with an
inertial mechanism even when the mean velocity goes to zero.

Furthermore, the difference between glass beads and sand becomes clear in the
light of the linear stability analysis. The instability mechanism is the same. However,
because of quantitative differences in the coefficients of the flow law, the characteristics
of the instability differ in the range where experimental measurements are possible.
This is clearly shown in figure 20 where the maximal growth rate predicted by the
theory is plotted as a function of the Froude number for both glass beads and
sand. We also indicate the range of Froude number in which experiments were
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Figure 20. Predicted dimensionless growth rate of the most unstable mode as a function of
the Froude number for (a) glass beads (θ = 29◦) and (b) sand (θ = 35◦) (α = 1). Grey zone:
no flow. Hatched zone: no measurements.

carried out. It is clear from figure 20 that there is no qualitative difference between
the two systems. The difference lies only in the relative position of the unstable
region compared to the measurement region. For beads the flow threshold is below
the instability threshold and the measurements are carried out in a region where the
maximum growth rate mainly increases with the Froude number. By contrast, for
sand the flow threshold is above the instability threshold and the measurements are
carried out in a region where the growth rate decreases with the Froude number.

7. Conclusion
We have presented in this paper an experimental study of the long-surface-wave

instability for dense granular flows down rough inclined planes. By imposing a
controlled perturbation at the entrance of the flow, we have been able to precisely
measure the threshold and the dispersion relation of the instability.

Using glass beads we have shown that the long-wave instability is controlled
by the Froude number and occurs above a critical Froude number. The stability
threshold and the velocity of the waves measured experimentally are quantitatively
in good agreement with the predictions of a linear stability analysis of the Saint-
Venant equations. Using sand, we have observed that the properties of the long-
wave instability are strongly modified compared to glass beads the flow is always
unstable and the most unstable modes occur for slow flows, near the onset of the flow.
Despite the apparent qualitative differences between the two systems, we have shown
that the wave formation in both cases results from the same instability mechanism
and can be described by a stability analysis of the Saint-Venant equations. The
difference between sand and glass beads comes only from quantitative differences in
the coefficient of the friction law introduced in the Saint-Venant equations.

The instability mechanism for the wave formation in granular flows therefore
results, as for classical fluids, from the competition between inertia and gravity.
However, the features of the ‘classical’ long-wave instability can be modified due
to the specificity of the friction law for granular flows. The most dramatic effect is
that the stability threshold may be lowered below the onset of the flow, i.e. a granular
flow may be unstable as soon as it flows, when the velocity is small. This property
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strongly distinguishes granular flows from classical fluid flows and is closely related
to the existence of a critical angle in granular material. The existence of a strong
instability close to the onset of the flow certainly has dramatic consequences for the
nonlinear evolution of the waves. When the deformations develop, the thickness of the
layer can rapidly become less than the minimum thickness needed to flow. The flow
then evolves towards a succession of surges separated by material at rest. A similar
behaviour may be expected for other materials as soon as the material presents a yield
stress (mud, clay, granular. . . ). This study thus suggests that the existence of surges
often observed in geophysical flows could result from the existence of an instability
at the onset of flow due to a non-zero yield stress condition of the material.

Another interesting result of this study is the relative success of the depth-averaged
equations in predicting the stability properties of granular flows. Once a relevant
friction law is taken into account, quantitative properties can be predicted. This work
thus provides a good test for the relevance of the friction law deduced from steady
uniform flows, in a case where inertial effects determine the dynamics of the flow.

However, our study reveals an important limitation of the depth-averaged approach
we use for describing the instability. The simple first-order Saint-Venant equations
are unable to predict the cutoff frequency observed in the experiment. This cutoff
frequency is the signature of a dissipative mechanism that stabilizes short wavelengths.
Since dry granular flows do not experience surface tension, this stabilization
mechanism should be related to the streamwise velocity variations that are second-
order effects in a shallow-water description. In order to take into account these
longitudinal gradients, one should a priori know the full three-dimensional constitutive
equations, which is still an open problem for dense granular flows. Our measurements
of the surface-wave instability and of the cutoff frequency could therefore serve as a
test for future suggestions of constitutive equations.

This research was supported by the Ministère Français de la Recherche (ACI
“Jeunes Chercheurs” #2018 and “Prévention des Catastrophes Naturelles”). We
thank J. Vallance for stimulating discussions and V. Desbost and P. Ferrero for
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Appendix A
We develop in this Appendix the spatial stability analysis of the dispersion relation

(4.10) given by

−ω̃2 + 2αω̃k̃ +
i

F 2
((a − b)k̃ − aω̃) +

(
1

F 2
− α

)
k̃2 = 0. (A 1)

The pulsation ω̃ is real and the wavenumber k̃ is complex: k̃ = k̃r + ik̃i; the flow is
thus unstable when k̃i k̃r < 0. The resolution of the dispersion relation (A 1) gives two
spatial modes (+) and (−) for k̃(ω̃) that are written

k̃±
r =

α

(α − (1/F 2))
ω̃ ∓

√
2((a/F 2) − αb)

F 2(α − (1/F 2))
ω̃

×


−g(ω̃) +

(
g(ω̃)2 +

16ω̃2

F 4

(
a

F 2
− αb

)2
)1/2




−1/2

, (A 2)
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k̃
±
i =

a − b

2F 2(α − (1/F 2))
∓ 1

2
√

2(α − (1/F 2))

×


−g(ω̃) +

(
g(ω̃)2 +

16ω̃2

F 4

(
a

F 2
− αb

)2
)1/2




1/2

, (A 3)

where g(ω̃) is given by

g(ω̃) = 4

(
α(α − 1) +

1

F 2

)
ω̃2 − (a − b)2

F 4
. (A 4)

For the friction law considered here the parameter a is positive and the parameter
b is negative. The mode (−) is then always stable whereas the mode (+) may be
stable or unstable depending upon the Froude number or the angle of inclination.
However it can be shown that the sign of k̃i k̃r , i.e. the stability of the flow, does not
depend upon the pulsation ω̃. Therefore, to find the stability threshold we can study
the asymptotic form of the dispersion relation. For ω̃ → ∞, one finds

k̃±
r (+∞) =

ω̃

α ±
√

α(α − 1) + (1/F 2)
, (A 5)

k̃
±
i (+∞) =

∓a(1 − (b/a) − α ∓
√

α(α − 1) + (1/F 2))

2F 2(α ±
√

α(α − 1) + (1/F 2))
√

α(α − 1) + (1/F 2)
. (A 6)

The mode (+) is then unstable when

1 − b

a
> α +

√
α(α − 1) +

1

F 2
. (A 7)

Appendix B
We give here another way to determine the instability condition (4.13), which

underlines the competition between the kinematic waves and the gravity waves in the
stability of the flow.

By differentiating (4.7) with respect to t̃ and (4.8) with respect to x̃, the perturbed
velocity field u1 may be eliminated and one obtains a partial linear equation for h1

given by

∂2h1

∂t̃2
+ 2α

∂2h1

∂x̃∂t̃
+

(
α − 1

F 2

)
∂2h1

∂x̃2
= − a

F 2

(
∂h1

∂t̃
+

(
1 − b

a

)
∂h1

∂x̃

)
. (B 1)

We then re-write (B 1) as(
∂

∂t̃
+ c̃+

∂

∂x̃

) (
∂

∂t̃
+ c̃−

∂

∂x̃

)
h1 = − a

F 2

(
∂h1

∂t̃
+ c̃0

∂h1

∂x̃

)
, (B 2)

where c̃± = α ±
√

α(α − 1) + (1/F 2) is the speed of the gravity waves upstream

and downstream and c̃0 = 1 − (b/a) = 1 + (∂ũ/∂h̃)0 is the speed of the kinematic
waves. Equation (B 2) reveals a wave hierarchy in the system (Witham 1974). Long-
wavelength perturbations propagate to the first order as kinematic waves with a
velocity c̃0. The effect of higher-order terms may be captured by substituting ∂/∂t̃ ∼
−c̃0∂/∂x̃ on the left-hand side of (B 2), which leads to

(c̃0 − c̃−)(c̃+ − c̃0)
∂2h1

∂x̃2
=

a

F 2

(
∂h1

∂t̃
+ c̃0

∂h1

∂x̃

)
. (B 3)
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This equation is a combined diffusion equation and the stability of the perturbation
is given by the sign of the ‘diffusion coefficient’: (F 2/a)(c̃0 − c̃−)(c̃+ − c̃0). For the
friction law considered in this paper, a > 0 and b < 0, i.e. c̃0 > 1. On the other hand,
c̃− < 1 since α > 1 and F > 0. Therefore (c̃0 − c̃−) is always positive and the flow is
unstable when

c̃0 > c̃+. (B 4)

REFERENCES
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